Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jin Lin, Shan-Sheng Xu* and Hai-Bin Song

State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: shanshengxu@126.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.044$
$w R$ factor $=0.121$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Ferrocenyl-1-(1-indenyl)cyclohexane

In the title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{20} \mathrm{H}_{23}\right)\right]$, the two fivemembered cyclopentadienyl rings are nearly parallel, with a dihedral angle of only $3.8(1)^{\circ}$. The dihedral angle between the indenyl plane and the substituted cyclopentadienyl ring is 58.1 (2) ${ }^{\circ}$.

Comment

A number of ferrocene derivatives substituted with an indenyl group have been structurally characterized, including 2-ferrocenyl-2-(3-indenyl)propane (Gaede, 2000), 1-(ferrocenyl)indene and 2-(ferrocenyl)indene (Plenio, 1992). As a further contribution, we report here the synthesis and crystal structure of 1-ferrocenyl-1-(1-indenyl)cyclohexane, (I).

(I)

A view of (I) is shown in Fig. 1 and selected bond lengths and angles are listed in Table 1. The dihedral angle between the indenyl plane and the substituted cyclopentadienyl ring is 58.1 (2) ${ }^{\circ}$. The Fe atom is η^{5}-coordinated by both cyclopentadienyl rings, with distances ranging from 2.015 (4) (to C10) to 2.074 (3) \AA (to C1). The two five-membered cyclopentadienyl rings are nearly parallel, forming a dihedral angle of only $3.8(1)^{\circ}$. The cyclohexane ring has a normal chair conformation.

Experimental

A solution of indene ($1.39 \mathrm{ml}, 12 \mathrm{mmol}$) in tetrahydrofuran (THF, 100 ml) was reacted with n-butyllithium (12 mmol) at 273 K for 2 h and then stirred at room temperature for 4 h . A solution of $6,6-$ pentamethylenefulvene ($1.75 \mathrm{~g}, 12 \mathrm{mmol}$) in THF (20 ml) was added dropwise at 273 K with stirring. When the addition was complete, the solution was warmed to room temperature and stirring was continued overnight. Cyclopentadienyllithium (12 mmol) in THF (20 ml) was added to this reaction mixture, followed by $\mathrm{FeCl}_{2} \cdot 1.44 \mathrm{THF}(2.78 \mathrm{~g}$, 12 mmol), and the mixture was then stirred overnight. The solvent was removed under vacuum. The residue was chromatographed through a short column of $\mathrm{Al}_{2} \mathrm{O}_{3}$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, yielding an orange solid, which was collected and purified by chromatography on alumina to give orange crystals (yield $1.24 \mathrm{~g}, 27.07 \%$). Calculated for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{Fe}$: C 78.54, H 6.85\%; found: C 78.65 , H 6.61%.

Received 5 September 2005 Accepted 8 September 2005 Online 14 September 2005

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{20} \mathrm{H}_{21}\right)\right]$
$M_{r}=382.31$
Monoclinic, $P 2_{1} / c$
$a=13.232$ (2) A
$b=11.6546$ (18) \AA
$c=12.293$ (2) \AA
$\beta=92.881$ (3) ${ }^{\circ}$
$V=1893.4(5) \AA^{3}$
$Z=4$
$D_{x}=1.341 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2652
reflections
$\theta=2.3-24.3^{\circ}$
$\mu=0.80 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, orange
$0.26 \times 0.24 \times 0.18 \mathrm{~mm}$
Data collection

Bruker SMART CCD area-detector	3887 independent reflections
\quad diffractometer	2407 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.038$
Absorption correction: multi-scan	$\theta_{\max }=26.5^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996 $)$	$h=-16 \rightarrow 16$
$T_{\min }=0.793, T_{\max }=0.866$	$k=-14 \rightarrow 6$
10458 measured reflections	$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.121$
$S=1.01$
3887 reflections
235 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0562 P)^{2}\right. \\
& +0.5012 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.41 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids and the atom-numbering scheme.

The authors are grateful to the National Natural Science Foundation of China (Nos. 20421202 and 20472034) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20030055001).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Gaede, P. E. (2000). J. Organomet. Chem. 616, 29-63.
Plenio, H. (1992). Organometallics, 11, 1856-1859.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

